Pure Point Diffraction and Cut and Project Schemes for Measures: the Smooth Case
نویسنده
چکیده
We present cut and project formalism based on measures and continuous weight functions of sufficiently fast decay. The emerging measures are strongly almost periodic. The corresponding dynamical systems are compact groups and homomorphic images of the underlying torus. In particular, they are strictly ergodic with pure point spectrum and continuous eigenfunctions. Their diffraction can be calculated explicitly. Our results cover and extend corresponding earlier results on dense Dirac combs and continuous weight functions with compact support. They also mark a clear difference in terms of factor maps between the case of continuous and non-continuous weight functions.
منابع مشابه
Aperiodic Order and Pure Point Diffraction
We give a leisurely introduction into mathematical diffraction theory with a focus on pure point diffraction. In particular, we discuss various characterisations of pure point diffraction and common models arising from cut and project schemes. We finish with a list of open problems.
متن کاملWeighted Dirac combs with pure point diffraction
A class of translation bounded complex measures, which have the form of weighted Dirac combs, on locally compact Abelian groups is investigated. Given such a Dirac comb, we are interested in its diffraction spectrum which emerges as the Fourier transform of the autocorrelation measure. We present a sufficient set of conditions to ensure that the diffraction measure is a pure point measure. Simu...
متن کاملMini-Workshop: The Pisot Conjecture - From Substitution Dynamical Systems to Rauzy Fractals and Meyer Sets
This mini-workshop brought together researchers with diverse backgrounds and a common interest in facets of the Pisot conjecture, which relates certain properties of a substitution to dynamical properties of the associated subshift. Mathematics Subject Classification (2000): 37B10, 28A80, 37B50, 52C23. Introduction by the Organisers A substitution is a non-erasing morphism of the free monoid. S...
متن کاملDiffraction and Palm measure of point processes
Using the Palm measure notion, we prove the existence of the diffraction measure of all stationary and ergodic point processes. We get precise expressions of those measures in the case of specific processes : stochastic subsets of Z, sets obtained by the “cut-and-project” method. From a physical point of view, the diffraction of X rays by a material is a way of studying its microscopic structur...
متن کامل0 . 1 Which distributions of matter diffract ? – Some answers
This review revolves around the question which general distribution of scatterers (in a Euclidean space) results in a pure point diffraction spectrum. Firstly, we treat mathematical diffration theory and state conditions under which such a distribution has pure point diffraction. We explain how a cut and project scheme naturally appears in this context and then turn our attention to the special...
متن کامل